-
Intro to ML - 1
-
Intro to ML - 2
-
Data Pre Processing Files
-
Simple Linear Regression Files
-
Simple Linear Regression
-
Data Pre Processing
-
Math Behind
-
Linear Regression and Gradient Descent
-
Linear Regression - III
-
Gradient Descent
-
Multiple Regression Lab
-
Polynomial Regression
-
Multiple Regression lab File
-
Polynomial Regression and Regression Project Files
-
Class File on Simple Multiple and Polynomial Regression Topics
-
Regression evaluation metrics Bias variance tradeoff Underfitting - Overfitting
-
binary classification example project
-
Complete Kaggle Tutorial
-
Bias and variance , underfitting, Overfitting revision Regularisation : L1 and L2 and Lab
-
Logistic Regression
-
Regularization and Logistics Regression Files
-
Classification Evaluation Metrics
-
kNN
-
kNN Files
-
Revision & Doubts Session - Topics Till Dates
-
Decision Tree
-
Decision Tree - II
-
Imabalabce dataset and Hyper parameter tunning
-
Decision Tree Files
-
Ensemble Techniques - Random Forest
-
SVM & Boosting
-
Clustering
-
Revision
-
Project Doubts and Support
-
Feature Selection - Multicollinearity and Forward backwards with Lab
-
Ensemble - random forest and Bossting Files with Project Lab
-
SVM Theory Files
-
Clustering theory and Lab File
-
Imbalanced Data Classification Lab File
-
Hyperparameter Tuning lab File
Tutors
/1192415-dark_logo.jpg)
Innomatics Research Labs
PROGRAM OVERVIEW
CURRICULUM
Machine Learning
Projects
-
ML Classification Project
-
ML Regression Project