Tutors

Innomatics Research Labs

PROGRAM OVERVIEW

CURRICULUM

  Introduction to Machine Learning and Preprocessing Data

  • Introduction AI/ML
  • Understanding ML Frame Work
  • Solving a ML Problem
  • Data Preprocessing I - Handling Missing values -- Fill, drop techeniques
  • Data Preprocessing Lab - II Handling Outliers , Parsing Date features
  • Data Preprocessing - III Encoding categorical features -- One Hot encoding
  • Data Pre Processing - IV Encoding categorical features -- Label Encoding, Ordinal Encoding
  • Data PrePrecossing LAB V - Train test split, Feature Scaling, Building a ML Model
  • Data PrePrecossing LAB - Text PreProcessing
  • Data PrePrecossing LAB - Text PreProcessing - Bag of words/Count Vectorizer
  • Intro to Data Science AI and ML Class File
  • Solving the Problems in Machine Learning Class File
  • Tabular Data Pre Processing Class File
  • Unstructured Text Data preprocessing Class File
  • Tabular Data PreProcessing Lab File
  • Text Preprocessing Lab File
  • Text Pre Processing TF IDF and Project Discussion
  • Text Pre Processing Updated File
  • Image Preprocessing - I
  • Image preprocessing File
  • Image Preprocessing - II
  • Image Processing - III
  • MNIST - Hand Written Digit Recognition File

  Deep Drive to Machine Learning Algorithms

  • Introduction to Vectors & Scalars (Linear Algebra - Part 1
  • Dot Product, Distance calculation (Linear Algebra - Part 2 )
  • Projection vector, Equation of line - (Linear Algebra - Part 3)
  • Simple Linear Regression Algorithm
  • Gradient Descent
  • LInear Algebra Complete Concept PDF
  • Simple Linear Regression Class PDF
  • Derivation of Gradient Descent Class PDF
  • Gradient Descent - II
  • Simple Linear Regression using Gradient Descent -- Lab
  • Gradient Descent File
  • Multiple Linear Regression
  • Multiple Linear Regression PDF
  • Simple and Multiple Regression Lab File
  • Usecase : Startup Profit Prediction(Multiple Linear Regression)
  • Metrics - Understanding R2 Score and Linear regression Assumptions
  • Assumption of Linear Regression and Metrics
  • Machine Learning - Equation for Hyper plane. PDF
  • Assumption of Linear Regression PDF
  • Metrics - Regression PDF
  • Multiple Linear Regression - Assumption and Metrics updated Lab File
  • Logistics Regression -Geometric Interpretation Part I
  • Logistics Regression PDF
  • Logistic Regression- Geometric Interpretation - Part 2
  • Logistic Regression Lab
  • Logistic Regression -- Lab File
  • Logistic Regression -- Lab, Confusion Matrix, Polynomial Features
  • Polynomial Regression Lab Files
  • Polynomial Features, Sk-Learn Pipeline
  • kNN Algorithm
  • kNN - Part 2
  • kNN - Part 3
  • kNN Files Lab
  • SVM
  • SVM _ Part 2
  • SVM - Part 3
  • SVM Lab File
  • SVM PDF
  • Metrics PDF
  • SVM Lab File
  • Naiva Bayes
  • Naives Bayes PDF
  • Bayes Theorem PDF
  • Naive Bayes - Part 2 Numerical Features and LAB
  • Naive Bayes Lab File
  • Decision Tree - Part 1
  • Decision Tree - Part 2
  • Decision Tree PDF
  • Decision Tree - Part 3
  • Decision Tree Regression PDF
  • Decision Tree and Logistics Probability Implementation PDF
  • Logistics Probability Implementation
  • Decision Tree & Logistic Regression Probabalistic Implementation
  • Regression Metrics
  • Regression Metrics PDF
  • Classification Metrics
  • Naive Bayes complete PDF
  • Imabalnce and Classification Metrics PDF
  • Complete Decision Tree Lab File
  • Classification Metrics - PArt 2
  • Model Selection - Concepts of OverFitting and UnderFitting
  • Overfitting and Underfitting - Part 1 PDF File
  • Model Selection PDF File
  • Model Selection - Concepts of OverFitting and UnderFitting Part 2
  • Cross Validation lab and Decision Tree Hyperparameters
  • Grid Search cv and Randmized Serach CV -- Hyperparameter tunning
  • Hyper parameter tuning files
  • Ensemble - Bagging
  • Ensemble Learning -- Voting Ensemble and Stacking
  • Ensemble - Boosting Techniques AdaBoost
  • Ensemble Learning -- Bossting -- GBM
  • Random Forest and Stacking PDF
  • GBM PDF
  • AdaBoost PDF
  • Ensemble Techniques Lab Files
  • Unsupervised Learning - Clustering - Part 1
  • Unsupervised Learning - Clustering - Part 2
  • Hierarchical Clustering
  • Hierarchical Clustering Lab and PCA Intro
  • PCA - Part 2
  • 2nd Jan -
  • 3rd Jan -
  • Unsupervised Learning PDF
  • Hierarchical Clustering PDF
  • Feature Selectiona and Transformation PDF
  • Dimensionality Reduction PDF

  Assignments

  • This section has no content published in it.

  Projects

  • NLP _ Text Preprocessing Sprint 1 & Sprint 2
  • ML Project - 1

  Machine Learning Assessment

  • Machine Learning_Assessment_June_2023